
1

22. May, 2024

STAKEX from DEGENX

SolidProof_io @solidproof_io

AUDIT
SECURITY ASSESSMENT

FOR

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

Introduction	
4
Disclaimer	
4
Project Overview	
5

Summary	
5
Social Medias	
5
Audit Summary	
6
File Overview	
7
Imported packages	
9

Audit Information	
10
Vulnerability & Risk Level	
10
Auditing Strategy and Techniques Applied	
11
Methodology	
11

Overall Security	
12
Upgradeability	
12
Ownership	
13

Ownership Privileges	
14
Minting tokens	
14
Burning tokens	
15
Blacklist addresses	
16
Fees and Tax	
17
Lock User Funds	
18
Components	
19
Exposed Functions	
19
StateVariables	
19
Capabilities	
20
Inheritance Graph	
21

Centralization Privileges	
22
Audit Results	
23

Critical issues	
23
High issues	
23

2

Medium issues	
23
Low issues	
23
Informational issues	 24

3

Introduction
SolidProof.io is a brand of the officially registered company Future Visions
Deutschland. We’re mainly focused on Blockchain Security, such as Smart
Contract Audits and KYC verification for project teams.
Solidproof.io assesses potential security issues in the smart contracts
implementations, reviews for potential inconsistencies between the code
base and the whitepaper/documentation, and provides suggestions for
improvement.

Disclaimer
SolidProof.io reports are not, nor should they be considered, an
“endorsement” or “disapproval” of any particular project or team. These
reports are not, nor should they be considered, an indication of the
economics or value of any “product” or “asset” created by any team.
SolidProof.io does not cover testing or auditing the integration with
external contracts or services (such as Unicrypt, Uniswap, PancakeSwap,
etc.).

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analysed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of the security or
functionality of the technology we agree to analyse.

4

https://www.soliproof.io
http://SolidProof.io

Project Overview

Summary

Social Medias

Project Name DegenX Finance

Website https://dgnx.finance/

About the project DEGENX is multichain ecosystem that offers a suite of
decentralized applications (dApps) and services to provide
solutions for projects and individuals in the DeFi space.
DEGENX is multichain ecosystem that offers a suite of
decentralized applications (dApps) and services to provide
solutions for projects and individuals in the DeFi space.

Chain Avalanche

Language Solidity

Codebase Link Provided as Files (Private Repo)

Commit N/A

Unit Tests Provided

Telegram https://t.me/DegenXportal

Twitter https://twitter.com/degenecosystem

Facebook N/A

Instagram https://instagram.com/degenecosystem

Github https://github.com/DEGENTOKENTEAM

Reddit https://www.reddit.com/user/degentrader_sd

Medium https://medium.com/@degentraderteam

Discord https://discord.gg/BMaVtEVkgC

Youtube https://youtube.com/@DGNX.FINANCE-DEGENX?sub_confirmation=1

TikTok https://www.tiktok.com/@degen_traders

LinkedIn N/A

5

https://t.me/DegenXportal
https://twitter.com/degenecosystem
https://instagram.com/degenecosystem
https://github.com/DEGENTOKENTEAM
https://www.reddit.com/user/degentrader_sd
https://medium.com/@degentraderteam
https://discord.gg/BMaVtEVkgC
https://youtube.com/@DGNX.FINANCE-DEGENX?sub_confirmation=1
https://www.tiktok.com/@degen_traders
https://dgnx.finance/

Audit Summary

Note - The following audit report presents a comprehensive security
analysis of the smart contract utilized in the project that includes
malicious outside manipulation of the contract’s functions. This analysis
did not include functional testing (or unit testing) of the contract/s logic.
We cannot guarantee 100% logical correctness of the contract as we did
not functionally test it. This includes internal calculations in the formulae
used in the contract.

Version Delivery Date Changelog

v1.0 22. May 2024
• Layout Project
• Automated- /Manual-Security Testing
• Summary

6

File Overview
The Team provided us with the files that should be tested in the security
assessment. This audit covered the following files listed below with an
SHA-1 Hash.

File Name SHA-1 Hash

contracts/diamond/helpers/
GenericErrors.sol bf8733c5c5ef44c0fab16a60432a0bcab02cd73b

contracts/diamond/helpers/
Constants.sol f8124ef60f121ea8950463a3ddcae6c8c6981856

contracts/diamond/helpers/
structs/Stake.sol 127496e3d2441a7a0114b697c11585a1b036d98f

contracts/diamond/helpers/
structs/
RewardAddParams.sol

df57de0a8de60cfc1d14ad4650ed04caaf1d408d

contracts/diamond/helpers/
structs/RewardEstimation.sol 85a8fc12757b5e073d062275456f0f6c92d3f840

contracts/diamond/helpers/
structs/SwapCandidate.sol 8e169a992ad42e5e265f54b138c1b7713f65f107

contracts/diamond/helpers/
structs/StakeBucket.sol 588d39cc32c811a3c14387e76dd57b7e1fbeec58

contracts/diamond/helpers/
structs/TokenInfo.sol fb54baf36ea7429b25604ad809bcbf1da7861c00

contracts/diamond/helpers/
Enums.sol fc859410835d7f9bc7b2dcc7c3ad08dbc858cb3c

contracts/diamond/helpers/
Functions.sol a131f4a9f29d397409f849d1830847fa2ca07020

contracts/diamond/
Diamond.sol 33a5ae9fda831cf0788076e8c68ae76cf30275c3

contracts/diamond/libraries/
LibStakeXManagement.sol 204065a10f52bc5fe7b9aee3fed936c4e6e2fad0

contracts/diamond/libraries/
LibStakeXPublic.sol 1096e46cf3186974d649984ac9c1699adf07ae58

contracts/diamond/libraries/
LibStakeXShared.sol 0e427c71a501a1693f6c1ed1173c1e921f4d637d

7

Please note: Files with a different hash value than in this table have been modified
after the security check, either intentionally or unintentionally. A different hash value
may (but need not) indicate a changed state or potential vulnerability that was not
the subject of this scan.

contracts/diamond/libraries/
LibDiamond.sol 8b88293ea9b17ce5c3a909e925958b4ced822d81

contracts/diamond/libraries/
LibStakeXNFTStorage.sol 5b93c108ef91d2e2b10b6e5932fdf73201d12219

contracts/diamond/libraries/
LibStakeXCore.sol 71c7f189e60f33e1756257b02761ff0ee4636312

contracts/diamond/libraries/
LibStakeXStorage.sol 547cdc58ff6fad92572b4e7eb55113c2f47e3c5f

contracts/diamond/
upgradeInitializers/
DiamondInit.sol

857f02c46e8c9f23b3714631e43adf2acf782762

contracts/diamond/facets/
StakeXNFTFacet.sol

fb7b76b6859b9abd429ba740750c354fd56e992
d

contracts/diamond/facets/
StakeXManagementFacet.sol 1080cb464181d3dcd68122d695929697fada6e00

contracts/diamond/facets/
AccessControlEnumerableFac
et.sol

7cb7492cde6018892a18805fcceffefcc8d88c05

contracts/diamond/facets/
DiamondLoupeFacet.sol e7def897bcfc8a7900975cbe8a95b0631db20c44

contracts/diamond/facets/
StakeXNFTComposerFacet.sol c0ba6a24ed591c4bf3719bedfbd8f1fafb06236f

contracts/diamond/facets/
StakeXCoreFacet.sol 97cb19a84500bba7848e44fc13bbe8f8a260f7c7

contracts/diamond/facets/
StakeXNFTRendererFacet.sol b81390ceddce17ae278fb309b815c511417a1b3c

contracts/diamond/facets/
DiamondCutFacet.sol 03cf892635603d0a25b69feaa766fa599057ea81

contracts/diamond/facets/
StakeXPublicFacet.sol d76d2450398af53d05e45c132d8b87de94c9ca86

8

Imported packages
Used code from other Frameworks/Smart Contracts (direct imports).

Note for Investors: We only audited contracts mentioned in the scope
above. All contracts related to the project apart from that are not a part of
the audit, and we cannot comment on its security and are not responsible
for it in any way.

Dependency / Import Path Count

@openzeppelin/contracts/access/IAccessControlEnumerable.sol 1

@openzeppelin/contracts/token/ERC20/IERC20.sol 3

@openzeppelin/contracts/token/ERC20/extensions/
IERC20Metadata.sol 5

@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol 3

@openzeppelin/contracts/utils/Base64.sol 1

@openzeppelin/contracts/utils/Strings.sol 2

@openzeppelin/contracts/utils/structs/EnumerableSet.sol 1

@solidstate/contracts/interfaces/IERC165.sol 1

@solidstate/contracts/interfaces/IERC721.sol 1

@solidstate/contracts/token/ERC721/SolidStateERC721.sol 1

@solidstate/contracts/token/ERC721/metadata/
ERC721MetadataStorage.sol 1

9

Audit Information

Vulnerability & Risk Level
Risk represents the probability that a certain source threat will exploit
vulnerability and the impact of that event on the organization or system.
The risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that can disrupt the
contract functioning in a number
of scenarios, or creates a risk that
the contract may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that affects the
desired outcome when using a
contract, or provides the
opportunity to use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9
A vulnerability that could affect
the desired outcome of executing
the contract in a specific scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that does not have
a significant impact on possible
scenarios for the use of the
contract and is probably
subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9
A vulnerability that have
informational character but is not
effecting any of the code.

An observation that
does not determine a

level of risk

10

Auditing Strategy and Techniques Applied
Throughout the review process, care was taken to check the repository for
security-related issues, code quality, and compliance with specifications
and best practices. To this end, our team of experienced pen-testers and
smart contract developers reviewed the code line by line and
documented any issues discovered.

We check every file manually. We use automated tools only so that they
help us achieve faster and better results.

Methodology
The auditing process follows a routine series of steps:

1. Code review that includes the following:
a. Review the specifications, sources, and instructions provided to

SolidProof to ensure we understand the smart contract's size,
scope, and functionality.

b. Manual review of the code, i.e., reading the source code line by
line to identify potential vulnerabilities.

c. Comparison to the specification, i.e., verifying that the code does
what is described in the specifications, sources, and instructions
provided to SolidProof.

2. Testing and automated analysis that includes the following:
a. Test coverage analysis determines whether test cases cover code

and how much code is executed when those test cases are
executed.

b. Symbolic execution is analysing a program to determine what
inputs cause each part of a program to execute.

3. Review best practices, i.e., smart contracts to improve efficiency,
effectiveness, clarity, maintainability, security, and control based on
best practices, recommendations, and research from industry and
academia.

4. Concrete, itemized and actionable recommendations to help you
secure your smart contracts.

11

Overall Security
Upgradeability

Contract is an upgradeable ❌ Deployer can update the contract with new
functionalities

Description The deployer can replace the old contract with a
new one with new features. Be aware of this,
because the owner can add new features that may
have a negative impact on your investments.

Example We assume that you have funds in the contract and
it has been audited by any security audit firm. Now
the audit has passed. After that, the deployer can
upgrade the contract to allow him to transfer the
funds you purchased without any approval from
you. This has the consequence that your funds can
be taken by the creator.

Comment N/A

12

Ownership

Note — If the contract is not deployed then we would consider the
ownership to be not renounced. Moreover, if there are no ownership
functionalities then the ownership is automatically considered
renounced.

The ownership is not
renounced ❌ The owner is not renounce

Description The owner has not renounced the ownership that
means that the owner retains control over the
contract’s operations, including the ability to
execute functions that may impact the contract’s
users or stakeholders. This can lead to several
potential issues, including:

• Centralizations
• The owner has significant control over contract’s

operations

Comment N/A

13

Ownership Privileges
These functions can be dangerous. Please note that abuse can lead to financial loss.
We have a guide where you can learn more about these Functions.

Minting tokens
Minting tokens refers to the process of creating new tokens in a cryptocurrency or
blockchain network. This process is typically performed by the project's owner or
designated authority, who can add new tokens to the network's total supply.

Contract owner cannot
mint new tokens ✅ The owner cannot mint new tokens

Description The owner is not able to mint new tokens once the
contract is deployed.

Comment N/A

14

Burning tokens
Burning tokens is the process of permanently destroying a certain number of tokens,
reducing the total supply of a cryptocurrency or token. This is usually done to increase
the value of the remaining tokens, as the reduced supply can create scarcity and
potentially drive up demand.

Contract owner cannot
burn tokens ✅ The owner cannot burn tokens

Description The owner is not able burn tokens without any
allowances.

Comment N/A

15

Blacklist addresses
Blacklisting addresses in smart contracts is the process of adding a
certain address to a blacklist, effectively preventing them from accessing
or participating in certain functionalities or transactions within the
contract. This can be useful in preventing fraudulent or malicious
activities, such as hacking attempts or money laundering.

Contract owner cannot
blacklist addresses ✅ The owner cannot blacklist addresses

Description The owner is not able blacklist addresses to lock funds.

Comment N/A

16

Fees and Tax
In some smart contracts, the owner or creator of the contract can set
fees for certain actions or operations within the contract. These fees can
be used to cover the contract's cost, such as paying for gas fees or
compensating the contract's owner for their time and effort in
developing and maintaining the contract.

Contract owner can
set fees greater than
25%

❌ Stake fees could go up to 50%

Description For example, a decentralized exchange (DEX) smart contract
may charge a fee for each trade executed on the platform.
This fee can be set by the owner of the contract and may be
a percentage of the trade value or a flat fee.
In other cases, the owner of the smart contract may set fees
for accessing or using certain features of the contract. For
instance, a subscription-based service smart contract may
charge a monthly or yearly fee for access to premium
features.

It's important to note that the fees set by the owner of a
smart contract may not be the same as the gas fees required
to execute the contract on the blockchain. Gas fees are
generally set by the network and vary based on factors such
as network congestion and the complexity of the transaction.
The fees set by the contract owner, on the other hand, are
independent of gas fees and are typically charged in addition
to gas fees.

Example Our assumption is that the owner can adjust the stake fees
up to 50%. If the transfer fee is set to 50%, it implies that the
Half amount of tokens you intend to send will be sent to the
address specified as the recipient in the contract. This implies
that the recipient will never have the intended amount of
tokens in their wallet as half of it has all been used up in
paying for the staking fee.

Comment N/A

17

Lock User Funds
In a smart contract, locking refers to the process of restricting access to
certain tokens or assets for a specified period of time. When tokens or
assets are locked in a smart contract, they cannot be transferred or used
until the lock-up period has expired or certain conditions have been met.

Owner cannot lock the
contract ✅ The owner cannot lock the contract

Description The owner is not able to lock the contract by any
functions or updating any variables.

Comment N/A

18

External/Public functions
External/public functions are functions that can be called from outside of a contract,
i.e., they can be accessed by other contracts or external accounts on the blockchain.
These functions are specified using the function declaration's external or public
visibility modifier.

State variables
State variables are variables that are stored on the blockchain as part of the contract's
state. They are declared at the contract level and can be accessed and modified by
any function within the contract. State variables can be defined with a visibility
modifier, such as public, private, or internal, which determines the access level of the
variable.

Components

Exposed Functions
This section lists functions that are explicitly declared public or payable. Please note
that getter methods for public stateVars are not included.

StateVariables

📝 Contracts 📚 Libraries 🔍 Interfaces 🎨 Abstract

11 8 0 0

🌐 Public 💰 Payable

82 3

External Internal Private Pure View

81 126 1 14 62

Total 🌐 Public

12 0

19

Capabilities

Solidity
Versions
observed

Transfers
ETH

💰 Can
Receive
Funds

🖥 Uses
Assembl
y

Delegate Call

^0.8.0
0.8.19
^0.8.17
^0.8.19

No Yes Yes Yes

20

Inheritance Graph
An inheritance graph is a graphical representation of the inheritance hierarchy
among contracts. In object-oriented programming, inheritance is a mechanism that
allows one class (or contract, in the case of Solidity) to inherit properties and methods
from another class. It shows the relationships between different contracts and how
they are related to each other through inheritance.

21

Centralization Privileges
Centralization can arise when one or more parties have privileged access or control
over the contract's functionality, data, or decision-making. This can occur, for example,
if a single entity controls the contract or if certain participants have special
permissions or abilities that others do not.

In the project, some authorities have access to the following functions:

Recommendations
To avoid potential hacking risks, the client should manage the private key
of the privileged account with care. Additionally, we recommend
enhancing the security practices of centralized privileges or roles in the
protocol through a decentralized mechanism or smart-contract-based
accounts, such as multi-signature wallets.

Here are some suggestions of what the client can do:

- Consider using multi-signature wallets: Multi-signature wallets require
multiple parties to sign off on a transaction before it can be executed,
providing an extra layer of security, e.g. Gnosis Safe

- Use of a timelock at least with a latency of, e.g. 48-72 hours for
awareness of privileged operations

- Introduce a DAO/Governance/Voting module to increase transparency
and user involvement

- Consider Renouncing the ownership so that the owner can no longer
modify any state variables of the contract. Make sure to set up
everything before renouncing.

File Privileges

StakeXmanagementFacet • Add Rewards and Stake Buckets
• Update Stake Bucket Shares
• Enable/Disable stake bucket, target and

reward token
• Enable/Disable deposit restriction
• Seet Staking fee
• Enable/Disable Protocol

StakeXNFTComposerFacet • Seet NFT Config
• Add/Update/Remove Later
• Update Layer Order and Assign Config to

Buckets

22

Audit Results

Critical issues

High issues

Medium issues

Low issues

No critical issues

No high issues

No medium issues

No Low issues

23

Informational issues

#1 | NatSpec documentation missing

Description - If you started to comment on your code, comment on all
other functions, variables etc.

Legend for the Issue Status

File Severity Location Status

All Informational N/A Open

Attribute or Symbol Meaning

Open The issue is not fixed by the project team.

Fixed The issue is fixed by the project team.

Acknowledged(ACK)
The issue has been acknowledged or declared as
part of business logic.

24

25

	Introduction
	Disclaimer
	Project Overview
	Audit Information
	Overall Security
	Ownership Privileges
	Centralization Privileges
	Audit Results

